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The geometry of continuous distributions of dislocations and secondary point 
defects created by these distributions is considered. Particularly, the dependence 
of a distribution of dislocations on the existence of secondary point defects is 
modeled by treating dislocations as those located in a time-dependent Riemannian 
material space describing, in a continuous limit, the influence of these point 
defects on metric properties of a crystal structure. The notions of local glide 
systems and involutive distributions of local slip planes are introduced in order 
to describe, in terms of differential geometry, some aspects of the kinematics of 
the motion of edge dislocations. The analysis leads, among others, to the definition 
of a class of distributions of dislocations with a distinguished involutive 
distribution of local slip planes and such that a formula of mesoscale character 
describing the influence of edge dislocations on the mean curvature of glide 
surfaces is valid. 

1. I N T R O D U C T I O N  

Let us begin with some general remarks concerning different methods 
of  the description o f  plastic phenomena  [see, e.g., Yang and Lee (1993) for 
a comprehensive treatment o f  the subject]. 

The basic practice in the cont inuum mechanics approach relies on a 
priori, empirical assumptions for different material responses, under the help 
of  general guidelines deduced axiomatically f rom basic postulates and limited 
empirical testing data. In particular, if we deal with the material response to 
plastic deformations,  this approach is termed the mathematical  theory o f  
plasticity, or  s imply macroplasticity (e.g., Thomas,  1991; Ivlev, 1966; Per- 
zyna, 1978). One of  the consequences o f  this hypothetical approach lies in the 
inability to distinguish features presented by a variety o f  plastic deformation 
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mechanisms, traced back at the microstructural level from dislocation glide, 
phase transformation, to microcracking damage (Yang and Lee, 1993). 

The physical theory of plasticity, or simply microplasticity (e.g., Suzuki 
et al., 1991; Hull and Bacon, 1994), deals with the physical background of 
materials subject to plastic deformation mechanisms and their interrelation- 
ship with the evolution of microstructure. However, in practice, microplastic- 
ity is rather a set of mathematically simplified (but useful in practical 
applications) methods for the representation of microscopic data for plastically 
deformed dislocated crystals than a general theory of microscopic states of 
such crystals. 

So-called mesoplasticity is a link between micro- and macro-scales based 
on the application of microplasticity concepts to various intermediate (or 
meso) scales where the quantitative theory of continuum mechanics is still 
applicable in describing the evolution of material structures during the plastic 
deformation process (e.g., Yang and Lee, 1993; Theodosiu, 1976; Aifantis, 
1987). In the mesoplasticity approach, plastic deformation can be, at least in 
principle, predicted by an Orowan-type theoretical model, i.e., by a generaliza- 
tion of the Orowan kinematic relation (verified on a microscopic scale) (Hull 
and Bacon, 1984): 

~1 = pbv (1.1) 

where ~/denotes the macroscopic strain rate, b is the modulus of the Burgers 
vector, p is the density of mobile dislocations, and v is the mean dislocation 
velocity. Therefore, in the mesoplasticity approach, quantities appear that are 
measured from a direct (microscopic) account of experimental data such as 
dislocation densities. 

Another theory, based on the mesoscale approximation of dislocated 
crystalline solids, but not relying on the validity of the Orowan-type relations, 
is the so-called geometric theory of  dislocations (e.g., Kondo, 1955; Bilby 
et al., 1958; KrOner, 1986; Trz~sowski, 1993). A continuously dislocated 
crystal may be described, in the framework of this theory, as a locally 
homogeneous body endowed with a non-Euclidean geometry representing 
its material structure in a manner analogous to that used in the gauge theory 
(Trz~sowski, 1993). The response of a dislocated crystalline solid on its total 
distortion is then deduced from field equations based on the local invariance 
of the dislocated crystalline structure (e.g., Trz~sowski, 1993; Kadi6 and 
Edelen, 1983) or taking advantage of the existence of the global invariance 
of geometric objects describing this structure (Trz~sowski and Slawianowski, 
1990). However, the response so defined differs from that considered in 
macroplasticity. Moreover, although the gauge theory (or the theory based 
on global invariance) may be useful in the description of internal stresses 
and couple stresses caused by the self-interaction of immobile dislocations 



Kinemat ics  of Edge Dislocations. I 2879 

(Trz~sowski 1993; Trz~sowski and Slawianowski, 1990), this theory is not 
useful for the description of irreversibility of the dislocation motion process 
and, more generally, for the description of the evolution of the dislocation 
state under plastic deformation (KrOner, 1995). 

However, the physical meaning of the geometric gauge-type theory of 
dislocations goes beyond its version dealing with the response of a dislocated 
crystalline solid (Trz~sowski, 1993). It is shown in this paper that, based on 
a purely geometric version of this theory and taking advantage of the existence 
of tensorial as well as scalar densities of dislocations (Trz~sowski, 1994, and 
Section 2), we can derive rigorously Orowan-type formulas (Trz~sowski, 
1998). A key to this deduction is the notion of involutive distributions of 
local slip planes (Section 3). The geometry of these distributions is discussed 
here and their kinematics is considered in Trz~sowski (1998). 

2. CONTINUOUS DISTRIBUTIONS OF DISLOCATIONS 

It is well known that the occurrence of many dislocations causes the 
appearance of a particular inelastic distortion of a crystal lattice. Namely, 
though this distortion breaks the long-range order of a crystalline solid, 
nevertheless its short-range order is remarkably preserved, and the dislocated 
crystalline solid can be locally approximately described as a macroscopically 
small part of an ideal crystal, In the geometric theory of continuized dislocated 
Bravais crystals (e.g., KrOner, 1986; Trz~sowski, 1993) this inelastic distortion 
can be introduced by means of a distinguished anholonomic moving frame 

= (Ea; a = 1, 2, 3) called the Bravais moving frame (Trz~sowski, 1993). 
If X = (X a) is a Lagrange coordinate system such that [X A] = cm, A = 1, 
2, 3, then 

Ea -~- r r E C ~, 0 A ~- O[OX a 

lEa ]  = [OA] = c m  -1 ,  [a ea] = [11 (2.1) 

and the moving coframe ~*  = (E a, a = 1, 2, 3) dual to �9 has the follow- 
ing representation: 

E a = ~a dX a, [E a] = [dX a] = cm 

(E a, E b )  = ~A eA = ~g (2.2) 
b 

The short-range order of the dislocated Bravais crystal is represented then 
by local crystallographic directions La = {sEa: s e R}, a = 1, 2, 3, and its 
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long-range distortion is represented by the object of  anholonomity (C~,c) of  
the Bravais moving frame: 

C C 00 
[Ea, Eb] = CabEo Cab ~ C , [C~b] = cm - l  (2.3) 

where [u, v] = u o v - v o u denotes the commutator product (bracket) of  
vector fields u and v considered [according to (2.1)] as first-order differential 
operators. The vanishing of the object of  anholonomity means the lack of  
dislocations. The long-range distortion can be equivalently represented by 
the so-called Burgers f ie ld  a'.  = (xa), a triple of 2-forms defined as 

T a ~ -"  dE a = �89 b ^ E c, ['r a] = cm, [ r~]  = cm - l  (2.4) 

where ^ denotes the exterior product. The Burgers field is related to the 
object of  anholonomity according to (Yano, 1958) 

~'~ = - C ~  (2.5) 

It is known that the occurrence of many dislocations in a crystalline 
solid is accompanied by the appearance of point defects. It is, e.g., due to 
intersections of  the dislocation lines. For example, point defects can appear 
in crossover points of  edge dislocations or when two parallel dislocation 
lines are joining together (Oding, 1961). On the other hand, it is known also 
that dislocations have no influence on local metric properties of  a crystal 
structure. Consequently, a continuized dislocated Bravais crystal can be 
endowed with a D-parallel intrinsic metric, say such that the Bravais moving 
frame �9 is orthonormal with respect to it (Kr6ner, 1986; Trz,  sowski, 1994): 

g = ~ab E a  ~ Eb = gaB dXA ~ d X  ~ 

b 
gAB = ~A eB ~ab, [gan] = [~ab] = [1], [g] = cm 2 (2.6) 

with the corresponding material volume 3-form of  the form 

V = E 1 ^ E 2 ^ E 3 1 d X  A = -~ eABC ^ dX a ^ dX  c 

= e dX 1 ̂  dX  2 ^ dX  3, [V] = cm 3 (2.7) 

where 

eABC = eeABC, e = det(~A) = g u2, g = det(gaB), [e] = [1] (2.8) 

where eASC denotes the permutation symbol associated with the cobase fields 
dX  A, A = 1, 2, 3. Since the metric tensor (2.6) is flat if dislocations are 
absent (i.e., -r a = 0, a = 1, 2, 3), this metric tensor may be interpreted as 
the one representing, in a continuous limit, the influence of secondary poin t  
defects (i.e., created by the considered distribution of dislocations) on metric 
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properties of the Bravais crystal (Trz~sowski, 1994). Consequently, we can 
consider the base vector fields of a Bravais moving frame as those defining 
the Burgers field as well as the local scales of an in ternal  length  m e a s u r e m e n t  

along local crystallographic directions of the continuized dislocated Bravais 
crystal. It ought to be stressed that these base vector fields do not describe 
translational symmetries of local ideal Bravais lattices. This is because transla- 
tional symmetries of a crystal structure are lost in the continuous limit defining 
the continuized Bravais crystal [however, rotational symmetries of this crystal 
structure are locally preserved (Trz~sowski, 1993)]. Finally, we see that the 
triple (~,g, To) defines a continuous geometric model of the inelastic distortion 
of a Bravais crystal structure due to the occurrence of many dislocations 
(Trz$sowski, 1994). 

The long-range distortion of a crystal structure due to dislocations can 
be quantitatively measured by the Burger s  vector. Its local counterpart, called 
the local Burgers vector, can be introduced in the following way [see Trz~sow- 
ski (1994) for a more precise reasoning]. According to the above representa- 
tion of the influence of many dislocations on a Bravais crystal structure, the 
dependence of a distribution of dislocations on the existence of secondary 
point defects may be modeled by treating dislocations as those located in 
the Riemannian mater ia l  space  ~g = (~ ,  g) describing the distortion of 
metric properties of the crystal structure (Trzssowski, 1994); ~ denotes the 
body identified with an open, simply connected subset of the Euclidean point 
space E 3 (the configurational space of the body). Next, if the vector-valued 
2-form ~ defined by 

Y., = Ea | Y_, ~, 

w h e r e  

X a ~. ~ab~b 

Xa = 1 eab~Xbc, ~bc = E b ^ E c (2.9) 

eabc = gl/2~-abc, g = detl(~ab)l = 1 (2.10) 

and Cab c denotes the permutation symbol, is considered as the one representing 
a surface element dE of a surface E C ~g  (i.e., ~ is a 2-dimensional 
submanifold of ~ )  with the unit normal i, i.e., if we identify 

X ~ d E l ,  ! = laEa 

111112 = ~ablal b = 1, [!] = cm -1 (2.11) 

then it follows from (2.4) and (2.9) that the component "r a of the Burgers 
field "to may be identified with an infinitesimal quantity ~b" of the dimension 
of the Burgers vector component (Trz~sowski, 1994): 

.r a ~ ~b  a, ~b a = p d ~ b  a 

]p] = c m  -2 ,  [b a] --- [~b a] = cm, [dE] = c m  2 ( 2 . 1 2 )  
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where p is a positive scalar independent of the choice of !, and 

pb a = lbot ha, la = ~abl b (2.13a) 

oLab 1 ~ a c d ~  b = -~ ~ " c d ,  [OL ab] = cm -I (2.13b) 

where e abc= tE abc  = Eab c. Let us consider ! as the g-unit vector field tangent 
to a dislocation line, understood here (at least locally) as the one defining a 
boundary between slipped and unslipped parts of the crystal (Hull and Bacon, 
1984; Trz,sowski, 1998) normal to the surface element dE. Assuming the 
scalar p to be the volume scalar density o f  dislocations defined as the length 
of all dislocation lines included in the volume unit of the Riemannian material 
space ~g,  we can define the local Burgers vector as b = baEa, [b] = [1]. 
The tensor field ot = otObE a (~ Eb is called the dislocation density tensor 
(Trz,sowski, 1994). A line in ~g (with its unit tangent I) is interpreted as 
the edge dislocation line if  (Trz, sowski, 1994) 

where 

bala = bgmala = 0, bg > 0 (2.14) 

b = b g m ,  m = m aEa, 

bg = Ilbllg = (baba) I/2, [bg] = cm, 

or as the screw dislocation line if 

b a = .ql a, 

I l m l l g  = 1 

[ m ]  = c m  - l  (2.15) 

In other cases the line is interpreted as a mixed (edge and screw) dislocation 
line. Note that a line in ~g  may be interpreted as a dislocation line iff bg 
0. If ! is tangent to a dislocation line, then the local plane 7(I, b) containing 
vectors I and b is interpreted as a local slip plane (Trz~sowski, 1994). For 
an edge dislocation line its local slip planes are univocally defined and normal 
to the n direction; the triple (!, m, n), where ! is the unit tangent to the line 
and m is defined by (2.13)-(2.15), constitutes a g-orthonormal vector base 
univocally defined (up to its orientation) along the line. For screw dislocation 
lines the local slip planes are not univocally defined. If I is an unit vector 
field on ~g such that the conditions (2.13)-(2.15) are fulfilled, then the 
corresponding ordered triple (!, m, n) of g-orthonormal vector fields on ~g 
will be called a local glide system for a family of edge dislocation lines 
admitted by the considered distribution of dislocations and tangent to I. The 
pair (m, n) will be called then the local slip system (of the local glide system). 
A distribution of dislocations such that each dislocation line is edge may be 
identified with a distribution o f  edge dislocations. 

-q q: 0 (2.16) 
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It follows from (2.5) and (2.13b) that the object of anholonomity can 
be written in terms of the dislocation density tensor: 

,~ab 

Particularly, the following 
edge dislocations: 

where 

C~c = t[b~ac] -- ebca~l da 

O~ ~~ ta = e~bc~ bC = C~b (2.17) 

object of anholonomity defines a distribution of 

CCab = t[aB~] = ~lLgntaB~] (2.18) 

t = taEa = IXgn, t a : ~abtb, [ta] = [n] = cm -1 

p% = (tat~ u2 > 0, nana = 1, [IXg] = cm -1 (2.19) 

Namely, the dislocation density tensor t~ and the local Burgers vector b are 
given then by 

os .~ 1 tcecba = _otba ( 2 . 2 0 )  

and 

pb a = �89 tclbe cba, p > 0 (2.21) 

So, in this case [see (2.15) and (2.19)] 

m ala = maria = 0 (2.22a) 

pbg = l I~g[1 - (nala)] 1/2 ~ 0 (2.22b) 

It follows from (2.14) and (2.22a) that each dislocation line is edge. Moreover, 
it follows from (2.22b) that a line in ~g is the dislocation line iff Inalal 
1. We will consider further dislocation lines such that 

n al~ = 0 (2.23) 

or, equivalently, such that the formula 

pbg = �89 ~g > 0 (2.24) 

stating that the local Burgers vector modulus bg is a positive scalar independent 
of the choice of 1, holds. It follows from (2.4), (2.5), and (2.18) that in the 
case (2.24) we have 

xa = pbgE ~ ^ n, n = na Ea,  n a = ~ab nb (2.25) 

and, for the local glide system (!, m, n) defined by the conditions (2.15), 
(2.19), (2.21), and (2.24), the identification (2.12) with 

ba  = eaOC~bc, ~bc = bgntblcl (2.26) 
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is valid. The local Burgers vector b = baEa may be interpreted, according 
to (2.12) and (2.26), as a vector field of  vortices (of the tensorial density 
13ab) in a cylinder tube with the section d~. A Burgers field of the form (2.25) 
may thus be viewed as the one defining a "dislocation f luid" (of the scalar 
density p) consisting of infinitesimal edge dislocation loops (Trz~sowski, 
1997). For example, the irradiation of a crystal with fast neutrons produces 
very small circular edge dislocation loops (Bullough and Newman, 1970). 
The loops can be treated then (in the continuized crystal approximation) as 
infinitesimal ones. Note that if the covector field n of (2.25) is interpreted 
as representing a certain class of  pairs of  parallel planes with equal distances 
(Schouten, 1954), then (2.12), (2.25), and (2.26) mean that the infinitesimal 
loops as well as their infinitesimal Burgers vectors ~b = ~baEa "lie" in 
parallel planes defined by n. On the other hand, (2.21), (2.22a), and (2.23) 
mean that each plane belonging to this family of  planes is a local slip plane. 
Thus, one has both a glide motion of  infinitesimal edge dislocation loops 
(lying on the same local slip plane) and a local double cross-slip process in 
which the Burgers vector is parallel to a slip plane, but the dislocation line 
is bent in such a way that one part lies on the slip plane and the other on 
the plane parallel to it (Hull and Bacon, 1984). 

Let ~(t)  = ( E a ( "  , t); a = 1, 2 ,  3 ,  t E I C R+), be a time-dependent 
(with the time treated as a parameter) Bravais moving frame, and let ~*(t)  
= (Ea(',t)) denote the Bravais moving coframe dual to ~(t)  [see (2.1) and 
(2.2)]. The corresponding Burgers field -r,~(t) = (xa( ", t)) is then a triple of 
2-forms depending on the time parameter and defined, according to (2.4), 
by spatial external derivatives of 1-forms Ea( ., t). If g(., t) is the corresponding 
intrinsic metric, then we will denote by gt an instantaneous intrinsic metric 
defined by 

gt(X) = g(X, t) = ~abEa(X, t) | Eb(X, t) 

= gAB(X, t )dX A ~ dX  B (2.27) 

and we will denote by ~ t  = (~]~,gt) the Riemannian instantaneous material 
space. In (2.8) we have then 

eABC = eABc(X, t) = e (X, t)r 

e = e(X, t) = det(~A(X, t)), g = g(X, t) = det(gaB(X, t)) (2.28) 

3. DISTRIBUTIONS OF L O C A L  SLIP  PLANES 

Let us consider a distinguished family xr = {'rrp, p ~ ~ } of local slip 
planes (Section 2) defining the so-called two-dimensional distribution on ~g. 
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A two-dimensional distribution (of planes) is called (completely) integrable 
if there exists a family E = {Ep, p e ~}  of two-dimensional submanifolds 
of ~g ,  called integral manifolds of "rr, such that p E Ep and for each q E 
Ep the plane -trq, is tangent to Ep in q. For example, the local glide system 
(!, m, n) defined by (2.15), (2.19), (2.21), and (2.24) defines a two-dimensional 
integrable distribution (of local slip planes) if 

dt = O, t = ta E~ (3.1) 

that is, at least locally, we have then 

t = dq~ (3.2) 

If the first the de Rham cohomology class of the three-dimensional manifold 
~g vanishes (e.g., it is the case of a three-dimensional affine space) or, more 
generally, if the manifold is contractible to a point, then the potential q~ of 
(3.2) is defined globally. 

Let E~(p) ~ ~p, ot = 1, 2, be a base of the two-dimensional vector- 
space arp. The distribution "tr is called involutive iff there are C~-functions 
C ~ ,  a,  [3, K = 1, 2, on ~g such that (Sikorski, 1972) 

[E~, E~] = C~,~EK (3.3) 

A distribution is (completely) integrable iff it is involutive (Sikorski, 1972). 
If the condition (3.3) is fulfilled, the system of equations [see (2.1)] 

E ~q~=~0Aq~=0 ,  A = 1 ,2 ,3 ;  ot = 1,2 (3.4) 

has a solution that defines surfaces of the family E of integral manifolds as 
those given by 

Ec: ~(X) = c, dq0 :/: 0 (3.5) 

where c ~ R is a constant, i.e., E = {Ec, c e R} (Sinukov, 1979). It can be 
shown (Von Westenholz, 1978) that for eachp e ~ there are then coordinates 
X = (XA; A = 1, 2, 3) at p such that X 3 = qz For any such coordinates 
O~ = OIOX ~, ot = 1, 2, is a local basis for E and the slices 

Er = {q E U: X3(q)= c} (3.6) 

where U is a coordinate neighborhood of p, belong to E. Consequently, at 
least locally, we can consider an involutive distribution as the one that integral 
manifolds Ec are defined by a Lagrange coordinate system on ~ .  Moreover, 
it is known (Von Westenholz, 1978) that ~g is foliated by the distribution 
~, that is, through each point p E ~g there passes an unique maximal integral 
manifold of rr. Since the considered distribution "tr consists of local slip 
planes, these integral manifolds will be called slip surfaces. If the distribution 
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"tr is defined by a local glide system, the slip surfaces are virtually surfaces 
of a glide motion of edge dislocation lines, and then these surfaces will be 
called also (virtual) glide surfaces. 

Let ~ t  = (~,  gt) denote the Riemannian instantaneous material space 
(Section 2). The formulas (3.3) and (3.6) suggest that we consider a time- 
dependent Bravais moving frame ~(t) = (Ea(', t)) such that for each t ~ I 
there exists a coordinate system X = (X A) = (X% X 3) o n  ~ t  in which 

E3(X, t) --" 03 = OIOX3 

E~(X, t) "---- alr~-l/2(X3)ea(XK, t), or, K = 1, 2 (3.7) 

where "---- means that the formulas of (3.7) are valid in a distinguished coordi- 
nate system on ~t.  For example, if ~ = (~a; a = 1, 2, 3) is a reference 
coordinate system defined in ~0, then the coordinate transformation 

X Ot : XQ(~ K, t),  • 0 )  : Get, X 3 = 6 3, Or, K = 1, 2 (3 .8 )  

defines a convective Lagrange coordinate system on ~ preserving, at each 
instant t ~ / ,  the form (3.7) of the Bravais moving frame. Convective Lagrange 
coordinate systems will be considered as those defined on the time-dependent 
Riemannian space ~g. Denoting 

[e~, ea] = c ~ e ~  ( 3 . 9 )  

we obtain the condition (3.3) with 

C~,f~(X, t) = ~ (xa )c~ , f~ (X  '~ t) (3.10) 

Therefore, a Bravais moving frame defined by the condition (3.7) defines an 
involutive distribution "tr consisting of local planes spanned by the base vector 
fields E~, et = 1, 2. 

The object of anholonomity (C~b) [see (2.3)] for the Bravais moving 
frame of the form (3.7) is defined by (3.10) and 

C aa(X , t )  = - ' 3 3 K K (~ttt/XIFt)(X)~[a~3 ] 

C3a(X, t) = O, C33(X, t) = 0 (3.11) 

where denoted ~ ;  = 03lttt . Particularly, we have 

[ E ~ ,  E3]  - l , - T ( ~ t / ~ , ) E ~  

Introducing designations [see (2.17)] 

t .  = c ~  = c ~  

ta = C~K = aItTI/2C~K 

(3.12) 

[el, e2] = Otlel + ot2e2 (3.13) 
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we obtain 

and 

tl = ~71/2ot2, t2 = -~;-l/2ett, t3 = ~ t / ~ t  (3.14) 

c c C~,a 2tt~g~l, C C 3  = t3~[a~3] (3.15) 

where or, 13 = 1, 2, c = 1, 2, 3. The components Ot ab of the dislocation density 
tensor defined by (2.5), (2.13b), (2.17), and (3.11)-(3.15) take the following 
form in the coordinate system of (3.7): 

/ a 12 ) (0 t3,2 i) 
{2tab; ~" - t 3 1 2  0 

b --+ 1, 2, t2 - h  
(3.16) 

and the components b a, a = 1, 2, 3, of the local Burgers vector defined by 
(2.13a) are given by 

p b  ~ - (13tK - 1 , 1 ~  3~K T ,3,~)e , pb 3 = 0 (3.17) 

Consequently, 

pbala = pb~l~ = 13(t112 - t211) (3.18) 

Thus, a dislocation line is an edge dislocation line [i.e., the condition (2.14) 
is fulfilled] iff 13 = 0 or h12 = t211. Note that there are no screw dislocation 
lines [the condition (2.16)]. Since, according to (3.17) and (3.18), for an edge 
dislocation line such that 

13 = ! �9 E3 = 0 (3.19) 

where a �9 b = agb, we have 

b3 = b �9 E3 = 0 (3.20) 

the local slip planes "rr (i, b) are normal to the n direction defined as 

n = E3 (3 .21)  

Thus, the planes spanned by the base vectors E~, a = 1, 2, cover the local 
slip planes ~(!, b), and the maximal integral manifolds of the involutive 
distribution so defined are (virtual) glide surfaces for edge dislocation lines 
defined by (3.19). The corresponding local glide system (!, m, n) is defined 
by the conditions (3.19)-(3.21) with [see (2.15)] 

b ~ = bgm ~', m 3 = 0 (3.22a) 

2pbg = It31 = I ~ l q t , I  > 0 (3.22b) 
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The condition (3.22b) means that the local Burgers vector modulus bg is a 
positive scalar independent of the choice of ! [cf. the condition (2.24)]. 

The intrinsic metric tensor g takes the following form in a coordinate 
system of (3.7) [e.g., defined by the convective Lagrange coordinate sys- 
tem (3.8)]: 

g(X, t) = g t (X)  ~" aitt(X3)at(XK ) + dX  3 ~ d X  3 (3.23) 

where at is the metric tensor of a general 2-dimensional Riemannian space 
represented, according to (2.27) and (3.7), in the form 

at(X ~) = B~13e ~(X ~, t) | e ~(X ~, t), (e ~, el3) = ~ ,  et, [3, K = 1, 2 
(3.24) 

4. EQUIDISTANT MATERIAL SPACE 

The form (3,23) of the intrinsic metric tensor covers the canonical form 
of a metric tensor of the so-called equidistant Riemannian space (Sinukov, 
1979). Namely, this Riemannian space is defined by the following conditions: 

VgAq)B = ~gAB, ~ ~lz 0 
(4.1) 

q)A = q~gnA, nA na = 1, ~g > 0 

where V g = (F~c [g]) denotes the Levi-Civita covariant derivative with its 
Christoffel symbols F~ac[g] based on the metric tensor g. It follows from 
(4.1) that 

t~A = 0Aq) (4.2a) 

naVgnn = 0,  n A = gAnnn ( 4 . 2 b )  

where q0 is a smooth scalar. If g is a time-dependent intrinsic metric, the 
conditions (4.1) and (4.2) would be considered for the instantaneous intrinsic 
metrics gt, t ~ I. The condition (4.2a) defines, then, for each instantaneous 
material space ~ t  = ( ~ ,  gt) a family Xt = {Xc,t = q)tl(c), C E R} of surfaces 
orthogonal to the geodesic congruence (in the sense of gt) of  curves tangent 
to the unit vector field n = n (X, t). Each surface Ec,t belonging to this 
family, considered as a 2-dimensional submanifold of ~ t ,  is umbilical with 
the constant mean curvature Ht(c) (Schouten, 1954), and can be characterized 
as made up of endpoints of the geodesics of the same length starting, e.g., 
from the surface ]~0,t = q0tl(0) (Sinukov, 1979). This is the equidistant prop- 
erty of the normal congruence defined by the vector field q~ = %n. It can 
be shown (Sinukov, 1979) that for each t ~ I there exists a coordinate system 
X = (X K, X 3) on ~ t  such that X 3 = q~t, 

n A = ~A ( 4 . 3 )  
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and the surfaces Xc,t have, at least locally, a coordinate description of the 
form (3.6). Moreover, in this coordinate system, the instantaneous intrinsic 
metric gt has the representation (3.23) with 

�9 t (X 3) = a(t)2exp[--2Kt(X3)] (4.4a) 

Kt(X 3) = - - f  ~(X 3, t) dX  3 (4.4b) 

Assuming that ~t(0) = 1, we obtain 

~I'tt(X 3) = exp{--2[Kt(X 3) -- or(t)]} (4.5a) 

a (t) = exp[ot(t)], ct(t) = Kt(0) (4.5b) 

A Lagrange coordinate system defined by the conditions (3.6), (3.23), (4.3), 
and (4.5) will be called actual. The existence of  actual coordinates suggests 
that we consider a class of convective Lagrange coordinate systems X A = 
Xa(~, t), where ~ = (~a)  is a reference coordinate system on G0, such that 
X = (X A) is an actual coordinate system at the instant t e L The convective 
Lagrange coordinate systems so defined generalize those introduced by the 
coordinate transformation (3.8). 

A metric tensor ac,t, induced on the coordinate surface Ec of an actual 
coordinate system [see (3.6) and (3.23)], depends on the parameter t explicitly 
and defines the first fundamental form of the 2-dimensional submanifold Ec,t 
= (Ec,ac,t) of the instantaneous equidistant Riemannian space ~t: 

ac,,(X K) = ~,(c)a,(X K) = a[c, t]~t~(X ~) dX '~ | dX f~ 

at(X ") = a(X ~, t) = a,~a(X ~, t) dX '~ | dX ~ 

a[c, t]~a(X ~) = xtt,(c)a~a(X~, t), * , (0)  = 1 (4.6) 

Since the surface E~,t C ~ t  is umbilical, its second fundamental form bc,t 
has the following form (Eisenhart, 1964): 

bc, t(X ~) = b[c, t],~a(X ~) dX ~' | dX ~ 

nt(c)  
b[c, t ]~(X ~) = ~ a[c, t]~o(X K) (4,7) 

where the mean curvature Ht(c) of Ec,t has the form 

Hi(c) = 2Kt(C) (4.8) 

where Kt is defined by (4.4b) and K't = 03Kt. The mean curvature of E0,t will 
be denoted by Ha(t): 

Ha(t) = Hi(O) = 2K;(0) (4.9) 
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We conclude that if the scalar Wt of (3.7) has the form (4.5), then the 
time-dependent local glide system (1, m, n) defined by (3.19)-(3.21) describes 
a foliation of the (time-dependent) equidistant material space ~g -- (~ ,  g) 
by umbilical glide surfaces (see Section 3) with the constant mean curvature 
of the form (4.8). Moreover, it follows from (2.15),(3.22b), (4.5), and (4.8) 
that along each glide surface Xc,t, the formula 

pbgtxc, t = �89 IHt(c)l (4.10) 

describing the influence of  edge dislocations on the mean curvature of  the 
glide surface is valid. 

The Christoffel symbols F~c[g] of the Levi-Civita covariant derivative 
V g take, in coordinates X = (X K, X 3) of (3.23) with Wt given by (4.5), the 
following form (Yano, 1958; Sinukov, 1979): 

F33[gt] = F3~[g,] = F~'3[gt] = 0 

F~3[gt] = { (WtlWt)~fs ,  ~ t  = 2 K ~ t  

F~[g,] = F~,~[a,], F3~[g,] = ~ ' -~- Wt a ~  (4.11) 

where f '  = 03 f, V ~ = (F~,~[at]) denotes the Levi-Civita covariant derivative 
on the two-dimensional manifold X0,t = (X0, at), and we took into account 
that F~,~[ac,,] = F ~ [ a d .  It follows from (4.11) that the nonvanishing 
components R ~  = R ~  [g] of the covariant derivative V g are, at the instant 
t ~ L given by (Yano, 1958) 

R33.1 _ R 3  l ,, = = 2" [,~I,r /,iI/t _ 1 ('~l~;/'1,1)'t)2]gotl/ 

R~33 = -R~,3 = 1 [allt/Xltt __ 1 , 2 (q,,/,l~,) ]a,, 

R,,I~ ~ -R~.~ = R~,l~[at] - �88 ' 2 ~ - = ( ~ t  I ~ t )  (8~av 8~g.v) (4.12) 
where R~av[at] are components of the curvature tensor of the covariant deriva- 
tive V a. The components RAn = RCae of the Ricci tensor of  the covariant 
derivative V ~ have, at the instant t ~ L the following form: 

R ~ 3 = 0 ,  g , 3 = 0  

R33 = 

R~v = 

where Ral3[at] are 
V a, and 

Rc~13[at] 

Ka(t)  = 

A = K,  

_ [xi~t,/al~, t _ i (xitt/x[tt)2]g33" g33 = 1 

R3~ + R ~  = R~.~[at] - �89 (~t l~t)gf~-~ = A g f ~  (4.13) 

components of the Ricci tensor of the covariant derivative 

= Ka(t)a~f~ = Ktg~f~ 

�89 a~R~[a t ] ,  Kt = K a ( t ) l ~ ,  

1 # 
- ~ ( ~ , l ~ t ) ,  gaf~ = ~,a,~f~, �9 ~0) = 1 (4.14) 
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The scalar curvature Kg of the equidistant space ~g  is given by 

gg = -~gABRAB = -~ (2K t -- gt) l K; 2 (4.15) 

If the three-dimensional material space ~g  is an Einstein space, that is, 

RaB = 2Kggan (4.16) 

and thus ~g is, at each instant t ~ L a conformally flat space of a constant 
scalar curvature Kg = Kg (t) (Eisenhart, 1964), then the instantaneous umbili- 
cal surface ~c,t C ~ t  has a constant scalar curvature Kt(c) of the form 
(Eisenhart, 1964) 

Kt(c) = �88 2 + Kg(t) (4.17) 

where the mean curvature, Ht(c) of Ec.t is given by (4.8). Particularly, the 
surface ~0,t C 9~t has the scalar curvature K~(t) and 

Ka(t) = Kg(t) + K;(0) 2 (4.18) 

On the other hand, it follows from (4.5) and (4.13)-(4.16) that the equidistant 
space ~g is, at each instant t ~ /, an Einstein space iff 

K~' = f(K,, t) 

(K,(0), K;(0)) = (a(t), 13(t)), or(t) :/: 0 (4.19) 

where 

f (K ,  t) = Ka(t) exp{--2[Kt -- a(t)l} (4.20) 

Since (4.19) is reducible to 

IK[I = [f(Kt, t) + 13(t)] In (4.21) 

we obtain, comparing (4.18) and (4.21) and taking into account (4.8), that 

Kg(t) = -13(02, Ha(t) = 213(t), Ka(t) = 0 (4.22) 

and it follows from (4.5b), (4.8), (4.14), (4.17), and (4.22) that 

Kt(X 3) = 1 Ha(t)X 3 + or(t) (4.23) 

Consequently, we obtain from (4.5a) and (4.23) that, for the equidistant 
Einstein space ~g,  the scalar ~ t  of (3.23) takes the form 

�9 t(X 3) = exp[-Ha(t)X 3] (4.24) 

We conclude that the (time-dependent) equidistant material space ~g is 
an Einstein space (i.e., ~g is conformally flat of  a constant scalar curvature) 
iff ~g has a negative scalar curvature dependent on the time parameter t 
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only. In this case each instantaneous material space ~ t  is foliated by flat 
umbilical surfaces with the same constant mean curvature Ha(t). For example, 
in the case of a distribution of dislocations defined by the condition (3.7), 
we have [cf.(3.3) and (3.24)] 

[E,~, E~] = 0, or, 13 = 1, 2 (4.25) 

The distribution of dislocations so defined is a particular case of the distribu- 
tion of edge dislocations defined by (2.18), (2.19), and (2.24) if [cf. (3.1), 
(3.2), (3.22), (4.10), and (4.24)] 

t = ~gE3, ~g = Ha(t) > 0 (4.26) 

5. FINAL REMARKS 

Let us consider the distribution of dislocations defined by (3.7) and 
(4.25). In this case the intrinsic metric tensor g can be obtained by means 
of an isotropic local rescaling of the Euclidean metric (Trz~sowski, 1997) 
and the time-dependent material space ~g is, at each instant t ~ /, an 
equidistant Riemannian space of a constant negative scalar curvature Kg (t) 
(Section 4). The material space ~g is foliated, then, in the equidistant manner 
(Section 4), by flat umbilical glide surfaces [see the conditions (3.19)-(3.21)] 
with the same mean curvature Ha(t), t E L and [see (4.22)] 

Kg(t) = - {  Ha(t) 2 (5.1) 

Since, according to (4.10), we have then 

pbg = 1 i n a ( t )  I ( 5 .2 )  

we have a distribution of dislocations for which the existence of secondary 
point defects (Section 2) causes the occurrence of nonplanar glide surfaces. 
Note that in the dislocation fluid case defined by (2.18), (2.24), and the 
integrability condition (3.1), the relation (4.10) is not, in general [see (4.26)], 
valid. Note also that in general, unlike the case (5.1) and (5.2), the flatness of 
the material space ~g does not mean a lack of dislocations (Trz~sowski, 1994). 

The notions of local glide systems and involutive distributions of local 
slip planes introduced in this paper characterize, in terms of differential 
geometry, some aspects of the kinematics of the glide motion of edge disloca- 
tion lines. Particularly, they lead to the definition of a class of convective 
Lagrange coordinate systems distinguished by the condition that, in these 
coordinate systems, the time-dependent intrinsic metric tensor g takes the 
canonical form (3.23), and specified by some additional conditions [see, 
e.g., (3.7) and (3.8)]. These convective coordinate systems characterize the 
dependence of the equidistant property of the Riemannian material space 
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upon the time parameter (Section 4), and may be used for the definition of 
such material flows within the dislocated crystalline solid that are consistent 
with its foliation by (virtual) glide surfaces (Trz~sowski, 1998). 
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